Lecture 3: Planning by Dynamic Programming

Lecture 3: Planning by Dynamic Programming

Joseph Modayil

Lecture 3: Planning by Dynamic Programming

Outline

Introduction

Policy Evaluation

Policy Iteration

Value Iteration

Extensions to Dynamic Programming
[@ Contraction Mapping

Reference: Sutton & Barto, chapter 4

Lecture 3: Planning by Dynamic Programming

L Introduction

Motivation: Solving an MDP

Action=roll
15 99 (98 97 [96 |95 [94 [93 [92 9T
8T ? 83 |84 |85 <86 |87 |88 si}?; 50
80 ? 78 77)6 75 79 73 72 71
<
6T (62 5 (63 |64 66 |6 68 [69 5 [70
60 59 53\}7 56 55 5455 5. 5T
41 2 43 44 a7 48 49 50
70 ONEES AE Z7§3 327|314
Qe Nl
71 zz\isrza 25 26 |27 [287 [29 |30
[T @\ 7 ? 15 §/y 13 22 TIH]
T— |2 BN SSE A B g o]

m Consider a modified game of
Snakes and Ladders.

m States: Squares of the board
(1=Start 100=Terminal)
m Two actions:

m Flip a coin (move 1 or 2)
m Roll a die (move 1-6)

m Reward is -1 per step, v is 1

m Transitions: Move # squares,
climb up ladders, slide down snakes

m What is the meaning of value here?
m What can happen from state 1?7

m What action is best in each square?

Lecture 3: Planning by Dynamic Programming

‘— Introduction

Motivation: Solving an MDP (2)

100 99 98 97 96 95 94 93
Toll roll roll roll flip flip roll
& (2.9) | (34) | (40) | A47) | (53) | (6.0) 7.7
o | Fow” | o | Bhon | A i Toll
29| c1ze| (21| (us)|_ 30 A1ek” 9.) (8.4)
80 79 |78 77 73 725 |71
Toll it Toll o Toll [t roll
(13.0)| (13.3)] (-13.6)] 140 (15.0)| (15.5) (-15.8)
Flip STnig GzihD 3 P o | on> | Ga
Roll (-9.0) | (-11.1) {..ks) (-16.7)| (-16.3)| (-16.0)
7 53 52 51
roll roll roll roll
(-10.9) (12.9) (12.9)| (-133)
ol Sip | o |
(17.5) [(1a1)| 13.4)] 13D

o 38mn \3(7\ iip * Fip | 2ol roll

(-18.7) 7) (-18.6)\ % 4.! 7}1%) X -15.8

Zhonl 22ﬂip 2 ip 2T 28, 29ﬂip 3

(17.2)] (1525 (16.2) < (-17.4) 74) 1(1787' (-16.9)| (159
201 | on) RETRE AR CHETRENE
(169 171 6.9)| (-17.6)| (-17.9) (71531 (-186)| (18.9)] (19.2)| (-}
flig—" flip H

3 Tl [P |© Thip [Zhip O 0
(18.1)| (-18.2) (18.4) (-16.7)| (-17.6)

Lecture 3: Planning by Dynamic Programming

L Introduction

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem
Programming optimising a “program”, i.e. a policy
m c.f. linear programming

m A method for solving complex problems
m By breaking them down into subproblems

m Solve the subproblems
m Combine solutions to subproblems

Lecture 3: Planning by Dynamic Programming

L Introduction

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for
problems which have two properties:

m Optimal substructures

m Optimal solution to a problem composed from
optimal solutions to subproblems

m Overlapping subproblems

m Subproblems recur many times
m Solutions can be cached and reused

m Markov decision processes satisfy both properties

m Bellman equation gives recursive decomposition
m Value function stores and reuses solutions

Lecture 3: Planning by Dynamic Programming

L Introduction

Planning by Dynamic Programming

Dynamic programming assumes full knowledge of the MDP

It is used for planning in an MDP

For prediction:
m Input: MDP (S, A,P,R,~) and policy
m or: MRP (§,P™, R™,~)
m Output: value function v™

m Or for control:

m Input: MDP (S, A, P, R,7)

m Output: optimal value function v*

[and: optimal policy 7*

Lecture 3: Planning by Dynamic Programming

L Introduction

Other Applications of Dynamic Programming

Dynamic programming is used to solve many other problems, e.g.
m Scheduling algorithms

String algorithms (e.g. sequence alignment)

m Graph algorithms (e.g. shortest path algorithms)
m Graphical models (e.g. Viterbi algorithm)
]

Bioinformatics (e.g. lattice models)

Lecture 3: Planning by Dynamic Programming
L Policy Evaluation

therative Policy Evaluation

lterative Policy Evaluation

Problem: evaluate a given fixed policy 7
Solution: iterative application of Bellman expectation backup
Vi VW — .. =V

Using synchronous backups,

m At each iteration kK + 1

For all statess € S

Update Vii1(s) from Vi(s')
where s’ is a successor state of s

Convergence to v™ will be proven at the end of the lecture

Lecture 3: Planning by Dynamic Programming
L Policy Evaluation

therative Policy Evaluation

lterative Policy Evaluation (2)

Vica(s) = S m(s.a) (R; > P vk(s'>)

acA s'eS

Lecture 3: Planning by Dynamic Programming
L Policy Evaluation
LE><amp|e: Small Gridworld

Small Gridworld

1]2 |3

T 4 |5 |6 |7 r= -1

l on all transitions
8 |9 1o |11

actions
12 13 |14

m Undiscounted episodic MDP
my=1
m All episodes terminate in absorbing terminal state

Nonterminal states 1, ..., 14

One terminal state (shown twice as shaded squares)

Actions that would take agent off the grid leave state
unchanged

m Reward is -1 until the terminal state is reached

Lecture 3: Planning by Dynamic Programming
L Policy Evaluation
LE><amp|e: Small Gridworld

Iterative Policy Evaluation in Small Gridworld

Vi for the Greedy Policy
Random Policy wrt Vi

0.0{ 0.0} 0.0] 0.0
0.0] 0.0{ 0.0/ 0.0 random
0.0| 0.0] 0.0] 0.0 policy

0.0{ 0.0] 0.0] 0.0

0.0[-1.0{-1.0[-1.0 —
-1.0{-1.0]-1.0[-1.0
-1.0[-1.0]-1.0]-1.0 }
-1.0]-1.0]-1.0] 0.0 -

0.0(-1.7{-2.0{-2.0

-

k=2 -1.7)-2.0[-2.0[-2.0 <

2.0[-2.0|-2.0[-1.7 ti
5

-2.0/-2.0]-1.7] 0.0 ‘_I_’

Lecture 3: Planning by Dynamic Programming
L Policy Evaluation
LE><amp|e: Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

00]-2.4]-2.9]-3.0 — = |9
b3 2.4]-2.9]-3.0[-2.9 T q |,
2.9]-3.0-2.9]-2.4 HEEEE
-3.0[-2.9]-2.4| 0.0 Lo -
0.0]-6.1|-8.4]-9.0 — = |9
_ -6.1-7.7]-8.4|-8.4 Tl e | | - optimal
k=10 D policy
-8.4|-8.4]-7.7]-6.1 el
-9.0|-8.4]-6.1{ 0.0 Ll -] -
0.0]-14.-20.]-22. — = |9
14.]-18./-20.-20 T |4
-20.- :
k: [e0) T L)
-20.|-20.]-18]-14. el
-22./-20.|-14.] 0.0 Ll -] -

Lecture 3: Planning by Dynamic Programming
L Policy Iteration

L Policy Improvement

Policy Improvement

m Consider a deterministic policy, a = 7(s)
m We can improve the policy by acting greedily

7'(s) = argmax q" (s, a)
acA

m This improves the value from any state s over one step,
q"(s,7(s)) = max " (s, a) = g" (s, 7(s)) = v"(s)
ac

m It therefore improves the value function, v™ (s) > v7(s)
vi(s) < q7(s,7(5)) = Exr [Rep1 + 7" (Se41) | Se = 5]
<Er [Rer1 + 74" (Aer1, 7' (Se41)) | St = 5]
<Er [Rt+1 + YRey2 + quﬂ(5t+277fl(5t+2)) | St = 5]
< B [Reg1 +Re2+ .. | Se =] = v (s)

Lecture 3: Planning by Dynamic Programming
L Policy Iteration

L Policy Improvement

Policy Improvement (2)

m If improvements stop,
7" (5,7(5)) = max 7 (s,2) = 47(5.7(s)) = v"(s)
ac
m Then the Bellman optimality equation has been satisfied

™(s) =max q”" (s, a
v (s) = max 47 (s,3)

m Therefore v™(s) = v*(s) forall s € S

m so 7 is an optimal policy

Lecture 3: Planning by Dynamic Programming

L Policy Iteration

L Policy Improvement

Policy lteration

starting
Vr

Policy evaluation Estimate v™
Iterative policy evaluation

Policy improvement Generate 7/ > 7
Greedy policy improvement

evaluation
Vv —V"

si—>greedy(V)

improvement

Vv

Lecture 3: Planning by Dynamic Programming
L Policy Iteration
LExample: Jack’s Car Rental

Jack’s Car Rental

m States: Two locations, maximum of 20 cars at each
m Actions: Move up to 5 cars overnight (-$2 each)

m Reward: $10 for each car rented (must be available), v = 0.9

m Transitions: Cars returned and requested randomly

m Poisson distribution, n returns/requests with prob f;—:e_’\

m 1st location: average requests = 3, average returns = 3
m 2nd location: average requests = 4, average returns = 2

Lecture 3: Planning by Dynamic Programming
L Policy Iteration
LExample: Jack’s Car Rental

Policy Iteration in Jack’s Car Rental

20

#Cars at first location

0

0 #Cars at second location 2

Lecture 3: Planning by Dynamic Programming
L Policy Iteration

LE><tensions to Policy Iteration

Modified Policy lteration

Does policy evaluation need to converge to v™?
Or should we introduce a stopping condition
m e.g. e-convergence of value function

Or simply stop after k iterations of iterative policy evaluation?

For example, in the small gridworld kK = 3 was sufficient to
achieve optimal policy

m Why not update policy every iteration? i.e. stop after k =1
m This is equivalent to value iteration (next section)

Lecture 3: Planning by Dynamic Programming

L Policy Iteration

LE><tensions to Policy Iteration

Generalised Policy lteration

starting
Vr

Policy evaluation Estimate v™
Any policy evaluation algorithm
Policy improvement Generate 7/ > 7
Any policy improvement algorithm

evaluation
Vv —V"
si—>greedy(V)

improvement

Lecture 3: Planning by Dynamic Programming
LValue Iteration

L Deterministic Value Iteration

Deterministic Value Iteration

If we know the solution to subproblems v*(s’)

Then it is easy to construct the solution to v*(s)

v¥(s) + max R+ v*(s)

The idea of value iteration is to apply these updates iteratively

e.g. Starting at the goal (horizon) and working backwards

Lecture 3: Planning by Dynamic Programming
LValue Iteration

L Deterministic Value Iteration

Example: Shortest Path

g 0o (o |o0o]o o (-1 |1] 0| -1|-2|-=
ofo|o]o A | A4 l2|-2]-2
ofo|o]o A A 22| 2]-=2
oo |o]o A A 22|22

Problem \ Vs Vs

01| -2|-=3 0|1 |-2|-=3 o |-1|-21|-=3 0| -1|-21|-=3

4| -2]3]|-=3 4l 2|34 4|2 3|4 4| 2| 3| 4

2| -3|3]|-=3 2| 3| 4|4 2| 3| 4| =5 2| 3| 4|5

3| -3|3]|-=3 3| -4 |44 3| 4|55 3| 4|56

Lecture 3: Planning by Dynamic Programming
LValue Iteration
LValue Iteration in MDPs

Value Iteration in MDPs

MDPs don't usually have a finite horizon

They are typically loopy

So there is no “end” to work backwards from

However, we can still propagate information backwards

Using Bellman optimality equation to backup V(s) from V/(s')
Each subproblem is “easier” due to discount factor

Iterate until convergence

Lecture 3: Planning by Dynamic Programming
LValue Iteration
LValue Iteration in MDPs

Optimality in MDPs

An optimal policy 7* must provide both
m An optimal first action a* from any state s,

m Followed by an optimal policy from successor state s’

* _ a a x(
vi(s) = TG%RS—FV;SPSS,V (s)
S

Lecture 3: Planning by Dynamic Programming
LValue Iteration
LValue Iteration in MDPs

Value lteration

Problem: find optimal policy =

Vi—oVo— ... v*
Using synchronous backups

m At each iteration k +1
m For all statess € S
m Update Viy1(s) from Vi(s')

Convergence to v* will be proven later

|
m Solution: iterative application of Bellman optimality backup
|
|

Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy

Lecture 3: Planning by Dynamic Programming
LValue Iteration
LValue Iteration in MDPs

Value lIteration (2)

Lecture 3: Planning by Dynamic Programming
LValue Iteration
LSummary of DP Algorithms

Synchronous Dynamic Programming Algorithms

Problem Bellman Equation Algorithm
Iterative
Policy Evaluation

Prediction | Bellman Expectation Equation

Bellman Expectation Equation

Control . Policy lteration
+ Greedy Policy Improvement y

Control Bellman Optimality Equation Value lteration

m Algorithms are based on state-value function v™(s) or v*(s)

m Complexity O(mn?) per iteration, for m actions and n states

m Could also apply to action-value function g™ (s, a) or ¢*(s, a)

m Complexity O(m?n?) per iteration

Lecture 3: Planning by Dynamic Programming
LE><tensions to Dynamic Programming

LAsynchronous Dynamic Programming

Asynchronous Dynamic Programming

DP methods described so far used synchronous backups
i.e. all states are backed up in parallel

Asynchronous DP backs up states individually, in any order

| |
| |
| |
m For each selected state, apply the appropriate backup
m Can significantly reduce computation

[

Guaranteed to converge if all states continue to be selected

Lecture 3: Planning by Dynamic Programming
LE><tensions to Dynamic Programming

LAsynchronous Dynamic Programming

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

m /n-place dynamic programming
m Prioritised sweeping

m Real-time dynamic programming

Lecture 3: Planning by Dynamic Programming
LE><tensions to Dynamic Programming

LAsynchronous Dynamic Programming

In-Place Dynamic Programming

m Synchronous value iteration stores two copies of value function
forall sin &
Vipew(s) + max RI+~ Z P Vola(s')
s'eS
Vold A\ Vnew

m In-place value iteration only stores one copy of value function

forall sin S

V(s) = max | RI+ > P2 v(s)

ac
s'eS

Lecture 3: Planning by Dynamic Programming
LE><tensions to Dynamic Programming

LAsynchronous Dynamic Programming

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

max (R2+7 3 PAVA(S) | - Vils)
s’'eS
Backup the state with the largest remaining Bellman error
Update Bellman error of affected states after each backup

Requires knowledge of reverse dynamics (predecessor states)

Can be implemented efficiently by maintaining a priority queue

Lecture 3: Planning by Dynamic Programming
LE><tensions to Dynamic Programming

LAsynchronous Dynamic Programming

Real-Time Dynamic Programming

m Idea: only states that are relevant to agent

m Use agent’s experience to guide the selection of states
m After each time-step S;, A¢, Rey1

m Backup the state S;

V(5:) max (R‘}t + Z P2 V(s’))

s'eS

Lecture 3: Planning by Dynamic Programming
LE><tensions to Dynamic Programming

LFuII—width and sample backups

Full-Width Backups

DP uses full-width backups
For each backup (sync or async)

m Every successor state and action is
considered

m Using knowledge of the MDP transitions
and reward function

m DP is effective for medium-sized problems a
(millions of states)

For large problems DP suffers Bellman's
curse of dimensionality s

m Number of states n = |S| grows
exponentially with number of state
variables

m Even one backup can be too expensive

Lecture 3: Planning by Dynamic Programming
LE><tensions to Dynamic Programming

LApproximate Dynamic Programming

Approximate Dynamic Programming

m Approximate the value function

m Using a function approximator V%(s) = v(s;#), with a
parameter vector € R".

m The estimated value function at iteration k is V, = V%

m Use dynamic programming to compute V%1 from V%,

m e.g. Fitted Value Iteration repeats at each iteration k,

m Sample states S C S

m For each sample state s € S, compute target value using
Bellman optimality equation,

v _ a a O (!
Vk(s)_m% <R5+’)/ZPSS/V (5)>

ac
s’eS

m Train next value function V%1 using targets {(s, \7k(s)>}

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Some Technical Questions

How do we know that value iteration converges to v*?
Or that iterative policy evaluation converges to v™?
And therefore that policy iteration converges to v*?

Is the solution unique?

How fast do these algorithms converge?

These questions are resolved by contraction mapping theorem

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Value Function Space

Consider the vector space V over value functions

There are |S| dimensions

Each point in this space fully specifies a function V/(s)
What does a Bellman backup do to points in this space?
We will show that it brings value functions closer

And therefore the backups must converge on a unique solution

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Value Function co-Norm

m We will measure distance between state-value functions U and
V' by the co-norm

m i.e. the largest difference between state values,
-V = -V
1U = Vil = max |U(s) = V(s)|
m Define the Bellman expectation backup operator T™,
T"(V)=R" +~4P"V

where R™(s) = >, 4 m(als)R2
and (PTV)(s) = 2 e am(als) Xsres P V(s'):

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Bellman Expectation Backup is a Contraction

m The Bellman expectation backup operator is a y-contraction,
i.e. it makes value functions closer by at least +,

IT7U = T"V||ao = max |(R™ +7P"U)(s) — (R™ +~1P"V)(s))
= max |7 52, 7(als) Ly es P2 (U(S) = V($))]
< max 7 52, 7(als) Lyes PN U(S) — V()]
< max 7 5, 7(als) Lyes PV = Voo

< AU = Vloo(max 32, m(als) Xges Posr)
<AV =Vl

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. contains its limit
points) under an operator T(V), where T is a y-contraction,

m T converges to a unique fixed point

m At a linear convergence rate of =y

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Convergence of Iter. Policy Evaluation and Policy Iteration

The Bellman expectation operator T™ has a unique fixed point

v™ is a fixed point of T™ (by Bellman expectation equation)

[

[

m By contraction mapping theorem

m lterative policy evaluation converges on v™
[

Policy iteration converges on v*

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Bellman Optimality Backup is a Contraction

m Define the Bellman optimality backup operator T,
T*(V) = R? Vv
(V) = maxR? +~P

m This operator is a y-contraction, i.e. it makes value functions
closer by at least v (similar to previous proof)

IT7(U) = T*(V)lleo <AIU = Vl|eo

Lecture 3: Planning by Dynamic Programming

L Contraction Mapping

Convergence of Value Iteration

m The Bellman optimality operator T* has a unique fixed point
m v* is a fixed point of T* (by Bellman optimality equation)
m By contraction mapping theorem

m Value iteration converges on v*

