Lecture 7: Value Function Approximation

Joseph Modayil
Outline

1. Introduction

2. Incremental Methods

3. Batch Methods
Introduction

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

- Backgammon: 10^{20} states
- Computer Go: 10^{170} states
- Helicopter/Mountain Car: continuous state space
- Robots: informal state space (physical universe)

How can we scale up the model-free methods for prediction and control from the last two lectures?
Value Function Approximation

- So far we have represented value function by a *lookup table*
 - Every state s has an entry $V(s)$
 - Or every state-action pair s, a has an entry $Q(s, a)$

- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually

- Solution for large MDPs:
 - Estimate value function with *function approximation*
 \[
 V_\theta(s) \approx v^\pi(s)
 \]
 or
 \[
 Q_\theta(s, a) \approx q^\pi(s, a)
 \]
 - *Generalise* from seen states to unseen states
 - *Update* parameter θ using MC or TD learning
Which Function Approximator?

There are many function approximators, e.g.

- Artificial neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- Coarse coding

In principle, *any* function approximator can be used. However, the choice may be affected by some properties of RL:

- Experience is not i.i.d. - successive time-steps are correlated
- During control, value function $v^\pi(s)$ is non-stationary
- Agent’s actions affect the subsequent data it receives
- Feedback is delayed, not instantaneous
Classes of Function Approximation

- Tabular (No FA): a table with an entry for each MDP state
- State Aggregation: Partition environment states
- Linear function approximation: fixed features (or fixed kernel)
- Differentiable (nonlinear) function approximation: neural nets

So what should you choose? Depends on your goals.
- Top: good theory but weak performance
- Bottom: excellent performance but weak theory
- Linear function approximation is a useful middle ground
- Neural nets now commonly give the highest performance
Let $J(\theta)$ be a differentiable function of parameter vector θ

Define the gradient of $J(\theta)$ to be

$$\nabla_{\theta} J(\theta) = \begin{pmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{pmatrix}$$

To find a local minimum of $J(\theta)$

Adjust the parameter θ in the direction of -ve gradient

$$\Delta \theta = -\frac{1}{2} \alpha \nabla_{\theta} J(\theta)$$

where α is a step-size parameter
Goal: find parameter vector θ minimising mean-squared error between approximate value fn $V_\theta(s)$ and true value fn $v^\pi(s)$

$$J(\theta) = \mathbb{E}_\pi \left[(v^\pi(S) - V_\theta(S))^2 \right]$$

Note: The notation $\mathbb{E}_\pi [\cdot]$ means that the random variable S is drawn from a distribution induced by π. $\mathbb{E}_\pi [f(S)] = \sum_s f(s)d_\pi(s)$

Gradient descent finds a local minimum

$$\Delta \theta = -\frac{1}{2} \alpha \nabla_\theta J(\theta) = \alpha \mathbb{E}_\pi [(v^\pi(S) - V_\theta(S)) \nabla_\theta V_\theta(S)]$$

Stochastic gradient descent samples the gradient

$$\Delta \theta = \alpha (v^\pi(s) - V_\theta(s)) \nabla_\theta V_\theta(s)$$

Expected update is equal to full gradient update
Feature Vectors

- Represent state by a feature vector

$$\phi(s) = \begin{pmatrix} \phi_1(s) \\ \vdots \\ \phi_n(s) \end{pmatrix}$$

- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess
Approximate value function by a linear combination of features

\[V_\theta(s) = \phi(s) \top \theta = \sum_{j=1}^{n} \phi_j(s) \theta_j \]

Objective function is quadratic in parameters \(\theta \)

\[J(\theta) = \mathbb{E}_\pi \left[(v^\pi(S) - \phi(S) \top \theta)^2 \right] \]

Stochastic gradient descent converges on *global* optimum

Update rule is particularly simple

\[\nabla_\theta V_\theta(s) = \phi(s) \]

\[\Delta \theta = \alpha (v^\pi(s) - V_\theta(s)) \phi(s) \]

Update = *step-size* × *prediction error* × *feature vector*
Table Lookup Features

- Table lookup can be implemented as a special case of linear value function approximation
- Let the n states be given by $\mathcal{S} = \{s^{(1)}, \ldots, s^{(n)}\}$.
- Using table lookup features

$$\phi_{table}(s) = \begin{pmatrix} 1(s = s^{(1)}) \\ \vdots \\ 1(s = s^{(n)}) \end{pmatrix}$$

- Parameter vector θ gives value of each individual state

$$V(s) = \begin{pmatrix} 1(s = s^{(1)}) \\ \vdots \\ 1(s = s^{(n)}) \end{pmatrix} \cdot \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_n \end{pmatrix}$$
Coarse Coding

Example of linear value function approximation:

- **Coarse coding** provides large feature vector $\phi(s)$
- Parameter vector θ gives a value to each feature
Generalization in Coarse Coding

a) Narrow generalization
b) Broad generalization
c) Asymmetric generalization
Stochastic Gradient Descent with Coarse Coding

#Examples

10
40
160
640
2560
10240

Narrow features

Medium features

Broad features

desired function

approximation

feature width
Incremental Prediction Algorithms

- Have assumed true value function \(v^\pi(s) \) given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a target for \(v^\pi(s) \)
 - For MC, the target is the return \(G_t \)
 \[
 \Delta \theta = \alpha(G_t - V_\theta(s)) \nabla_\theta V_\theta(s)
 \]
 - For TD(0), the target is the TD target \(r + \gamma V_\theta(s') \)
 \[
 \Delta \theta = \alpha(r + \gamma V_\theta(s') - V_\theta(s)) \nabla_\theta V_\theta(s)
 \]
 - For TD(\(\lambda \)), the target is the \(\lambda \)-return \(G_t^\lambda \)
 \[
 \Delta \theta = \alpha(G_t^\lambda - V_\theta(s)) \nabla_\theta V_\theta(s)
 \]
Monte-Carlo with Value Function Approximation

- The return G_t is an unbiased, noisy sample of true value $v^\pi(s)$
- Can therefore apply supervised learning to “training data”:
 $$\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, \ldots, \langle S_T, G_T \rangle$$
- For example, using linear Monte-Carlo policy evaluation
 $$\Delta \theta = \alpha(G_t - V_\theta(s))\nabla_\theta V_\theta(s)$$
 $$= \alpha(G_t - V_\theta(s))\phi(s)$$
- Monte-Carlo evaluation converges to a local optimum
- Even when using non-linear value function approximation
The TD-target $R_{t+1} + \gamma V_\theta(S_{t+1})$ is a biased sample of true value $v^\pi(S_t)$.

Can still apply supervised learning to “training data”:

$$\langle S_1, R_2 + \gamma V_\theta(S_2) \rangle, \langle S_2, R_3 + \gamma V_\theta(S_3) \rangle, \ldots, \langle S_{T-1}, R_T \rangle$$

For example, using linear TD(0)

$$\Delta \theta = \alpha (r + \gamma V_\theta(s') - V_\theta(s)) \nabla_\theta V_\theta(s)$$

$$= \alpha \delta \phi(s)$$

Linear TD(0) converges (close) to global optimum.
The λ-return G^λ_t is also a biased sample of true value $V^\pi(s)$.

Can again apply supervised learning to "training data":

$$\langle S_1, G^\lambda_1 \rangle, \langle S_2, G^\lambda_2 \rangle, \ldots, \langle S_{T-1}, G^\lambda_{T-1} \rangle$$

Forward view linear TD(λ)

$$\Delta \theta = \alpha (G^\lambda_t - V_\theta(S_t))\nabla_\theta V_\theta(S_t)$$

$$= \alpha (G^\lambda_t - V_\theta(S_t))\phi(S_t)$$

Backward view linear TD(λ)

$$\delta_t = R_{t+1} + \gamma V_\theta(S_{t+1}) - V_\theta(S_t)$$

$$e_t = \gamma \lambda e_{t-1} + \phi(S_t)$$

$$\Delta \theta = \alpha \delta_t e_t$$
Control with Value Function Approximation

Policy evaluation Approximate policy evaluation, \(Q_\theta \approx q^\pi \)

Policy improvement \(\varepsilon \)-greedy policy improvement
Action-Value Function Approximation

- Approximate the action-value function
 \[Q_\theta(s, a) \approx q^\pi(s, a) \]

- Minimise mean-squared error between approximate action-value fn \(Q_\theta(s, a) \) and true action-value fn \(q^\pi(s, a) \)
 \[J(\theta) = \mathbb{E}_\pi [(q^\pi(S, A) - Q_\theta(S, A))^2] \]

 Here, \(\mathbb{E}_\pi [\cdot] \) means both \(S \) and \(A \) are drawn from a distribution induced by \(\pi \).

- Use stochastic gradient descent to find a local minimum
 \[-\frac{1}{2} \nabla_\theta J(\theta) = (q^\pi(s, a) - Q_\theta(s, a)) \nabla_\theta Q_\theta(s, a) \]
 \[\Delta \theta = \alpha(q^\pi(s, a) - Q_\theta(s, a)) \nabla_\theta Q_\theta(s, a) \]
Linear Action-Value Function Approximation

- Represent state and action by a feature vector
 \[
 \phi(s, a) = \begin{pmatrix}
 \phi_1(s, a) \\ \\
 \vdots \\ \\
 \phi_n(s, a)
 \end{pmatrix}
 \]

- Represent action-value fn by linear combination of features
 \[
 Q_\theta(s, a) = \phi(s, a)^\top \theta = \sum_{j=1}^{n} \phi_j(s, a)\theta_j
 \]

- Stochastic gradient descent update
 \[
 \nabla_\theta Q_\theta(s, a) = \phi(s, a) \\
 \Delta \theta = \alpha(q_\pi(s, a) - Q_\theta(s, a))\phi(s)
 \]
Incremental Linear Control Algorithms

- Like prediction, we must substitute a target for \(q^\pi(s, a) \)
 - For MC, the target is the return \(G_t \)
 \[
 \Delta \theta = \alpha (G_t - Q_\theta(S_t, a_t)) \phi(S_t, A_t)
 \]
 - For SARSA(0), the target is the TD target \(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) \)
 \[
 \Delta \theta = \alpha (R_{t+1} + \gamma Q_\theta(S_{t+1}, A_{t+1}) - Q_\theta(S_t, A_t)) \phi(S_t, A_t)
 \]
 - For forward-view Sarsa(\(\lambda \)), target is the \(\lambda \)-return with action-values
 \[
 \Delta \theta = \alpha (G_t^\lambda - Q_\theta(S_t, A_t)) \phi(S_t, A_t)
 \]
 - For backward-view Sarsa(\(\lambda \)), equivalent update is
 \[
 \delta_t = R_{t+1} + \gamma Q_\theta(S_{t+1}, A_{t+1}) - Q_\theta(S_t, A_t)
 \]
 \[
 e_t = \gamma \lambda e_{t-1} + \phi(S_t, A_t)
 \]
 \[
 \Delta \theta = \alpha \delta_t e_t
 \]
Linear Sarsa with Coarse Coding in Mountain Car
Linear Sarsa with Radial Basis Functions in Mountain Car
Study of λ: Should We Bootstrap?

- Mountain Car
 - Steps per episode
 - Accumulating traces
 - Replacing traces

- Random Walk
 - RMS error
 - Accumulating traces
 - Replacing traces

- Puddle World
 - Cost per episode
 - Replacing traces

- Cart and Pole
 - Failures per 100,000 steps
 - Accumulating traces
The previous results show it is desirable to bootstrap

But now we consider convergence issues

When do incremental prediction algorithms converge?
 - When using bootstrapping (i.e. TD with $\lambda < 1$)?
 - When using linear value function approximation?
 - When using off-policy learning?

Ideally, we would like algorithms that converge in all cases
Baird’s Counterexample

\[V_k(s) = \theta(7) + 2\theta(1) \]

\[V_k(s) = \theta(7) + 2\theta(2) \]

\[V_k(s) = \theta(7) + 2\theta(3) \]

\[V_k(s) = \theta(7) + 2\theta(4) \]

\[V_k(s) = \theta(7) + 2\theta(5) \]

100%

99%

1%

terminal state
Parameter Divergence in Baird’s Counterexample

Parameter values, $\theta_k(i)$
(log scale, broken at ± 1)
Convergence of Prediction Algorithms

<table>
<thead>
<tr>
<th>On/Off-Policy</th>
<th>Algorithm</th>
<th>Table Lookup</th>
<th>Linear</th>
<th>Non-Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Policy</td>
<td>MC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>TD(0)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>TD((\lambda))</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Off-Policy</td>
<td>MC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>TD(0)</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>TD((\lambda))</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
We have not quite achieved our ideal goal for prediction algorithms.
Gradient Temporal-Difference Learning

- TD does not follow the gradient of any objective function
- This is why TD can diverge when off-policy or using non-linear function approximation
- Gradient TD follows true gradient of projected Bellman error

<table>
<thead>
<tr>
<th>On/Off-Policy</th>
<th>Algorithm</th>
<th>Table Lookup</th>
<th>Linear</th>
<th>Non-Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Policy</td>
<td>MC</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td>TD</td>
<td>✔️</td>
<td>✔️</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Gradient TD</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Off-Policy</td>
<td>MC</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td>TD</td>
<td>✔️</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Gradient TD</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
In practice, the tabular control learning algorithms are extended to find a control policy (with linear FA or with neural nets).

In theory, many aspects of control are not as simple to specify under function approximation.

e.g. The starting state distribution is required before specifying an optimal policy, unlike in the tabular setting. The optimal policy can differ starting from state $s^{(1)}$ and from state $s^{(2)}$, but the state aggregation may not be able to distinguish between them.

Such situations commonly arise in large environments (e.g. robotics), and tracking is often preferred to convergence. (continually adapting the policy instead of converging to a fixed policy).
Batch Reinforcement Learning

- Gradient descent is simple and appealing
- But it is *not* sample efficient
- Batch methods seek to find the best fitting value function for a given a set of past experience (“training data”)
Given value function approximation $V_{\theta}(s) \approx v^{\pi}(s)$

And experience D consisting of \langlestate, estimated value\rangle pairs

$$D = \{\langle S_1, \hat{V}_1^{\pi} \rangle, \langle S_2, \hat{V}_2^{\pi} \rangle, \ldots, \langle S_T, \hat{V}_T^{\pi} \rangle\}$$

Which parameters θ give the best fitting value fn $V_{\theta}(s)$?

Least squares algorithms find parameter vector θ minimising sum-squared error between $V_{\theta}(S_t)$ and target values \hat{V}_t^{π},

$$LS(\theta) = \sum_{t=1}^{T} (\hat{V}_t^{\pi} - V_{\theta}(S_t))^2$$

$$= \mathbb{E}_D \left[(\hat{V}^{\pi} - V_{\theta}(s))^2 \right]$$
Given experience consisting of \(\langle \text{state}, \text{value} \rangle \) pairs

\[
\mathcal{D} = \{ \langle S_1, \hat{V}_1^\pi \rangle, \langle S_2, \hat{V}_2^\pi \rangle, \ldots, \langle S_T, \hat{V}_T^\pi \rangle \}
\]

Repeat:

1. Sample state, value from experience

\[
\langle s, \hat{V}^\pi \rangle \sim \mathcal{D}
\]

2. Apply stochastic gradient descent update

\[
\Delta \theta = \alpha (\hat{V}^\pi - V_\theta(s)) \nabla_\theta V_\theta(s)
\]

Converges to least squares solution

\[
\theta^\pi = \arg\min_\theta LS(\theta)
\]
Linear Least Squares Prediction

- Experience replay finds least squares solution
- But it may take many iterations
- Using linear value function approximation $V_\theta(s) = \phi(s)^T \theta$
- We can solve the least squares solution directly
Linear Least Squares Prediction (2)

- At minimum of $LS(\theta)$, the expected update must be zero

$$E_D[\Delta \theta] = 0$$

$$\alpha \sum_{t=1}^{T} \phi(S_t)(\hat{V}_t^\pi - \phi(S_t)^\top \theta) = 0$$

$$\sum_{t=1}^{T} \phi(S_t)\hat{V}_t^\pi = \sum_{t=1}^{T} \phi(S_t)\phi(S_t)^\top \theta$$

$$\theta = \left(\sum_{t=1}^{T} \phi(S_t)\phi(S_t)^\top\right)^{-1} \sum_{t=1}^{T} \phi(S_t)\hat{V}_t^\pi$$

- For N features, direct solution time is $O(N^3)$
- Incremental solution time is $O(N^2)$ using Shermann-Morrison
Linear Least Squares Prediction Algorithms

- We do not know true values v_t^π (have estimates \hat{V}_t^π)
- In practice, our “training data” must use noisy or biased samples of v_t^π

LSMC Least Squares Monte-Carlo uses return
\[v_t^\pi \approx G_t \]

LSTD Least Squares Temporal-Difference uses TD target
\[v_t^\pi \approx R_{t+1} + \gamma V_\theta(S_{t+1}) \]

LSTD(\lambda) Least Squares TD(\lambda) uses λ-return
\[v_t^\pi \approx V_t^\lambda \]

- In each case solve directly for fixed point of MC / TD / TD(\lambda)
Linear Least Squares Prediction Algorithms (2)

LSMC

\[0 = \sum_{t=1}^{T} \alpha (G_t - V_\theta(S_t)) \phi(S_t) \]

\[\theta = \left(\sum_{t=1}^{T} \phi(S_t)\phi(S_t)^\top \right)^{-1} \sum_{t=1}^{T} \phi(S_t)G_t \]

LSTD

\[0 = \sum_{t=1}^{T} \alpha (R_{t+1} + \gamma V_\theta(S_{t+1}) - V_\theta(S_t)) \phi(S_t) \]

\[\theta = \left(\sum_{t=1}^{T} \phi(S_t)(\phi(S_t) - \gamma \phi(S_{t+1}))^\top \right)^{-1} \sum_{t=1}^{T} \phi(S_t)R_{t+1} \]

LSTD(\lambda)

\[0 = \sum_{t=1}^{T} \alpha \delta_t e_t \]

\[\theta = \left(\sum_{t=1}^{T} e_t(\phi(S_t) - \gamma \phi(S_{t+1}))^\top \right)^{-1} \sum_{t=1}^{T} e_t R_{t+1} \]
Convergence of Linear Least Squares Prediction Algorithms

<table>
<thead>
<tr>
<th>On/Off-Policy</th>
<th>Algorithm</th>
<th>Table Lookup</th>
<th>Linear</th>
<th>Non-Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Policy</td>
<td>MC</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>LSMC</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TD</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>LSTD</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Off-Policy</td>
<td>MC</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>LSMC</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TD</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>LSTD</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
Least Squares Policy Iteration

Policy evaluation: Policy evaluation by least squares Q-learning
Policy improvement: Greedy policy improvement
Least Squares Action-Value Function Approximation

- Approximate action-value function $q^\pi(s, a)$
- using linear combination of features $\phi(s, a)$

$$Q_\theta(s, a) = \phi(s, a) \top \theta \approx q^\pi(s, a)$$

- Minimise least squares error between $Q_\theta(s, a)$ and $q^\pi(s, a)$
- from experience generated using policy π
- consisting of $\langle (state, action), value \rangle$ pairs

$$D = \{ \langle (S_1, A_1), \hat{V}^\pi_1 \rangle, \langle (S_2, A_2), \hat{V}^\pi_2 \rangle, \ldots, \langle (S_T, A_T), \hat{V}^\pi_T \rangle \}$$
For policy evaluation, we want to efficiently use all experience
For control, we also want to improve the policy
This experience is generated from many policies
So to evaluate $q^\pi(s, a)$ we must learn off-policy
We use the same idea as Q-learning:

- Use experience generated by old policy $S_t, A_t, R_{t+1}, S_{t+1} \sim \pi_{old}$
- Consider alternative successor action $a' = \pi_{new}(S_{t+1})$
- Update $Q_\theta(S_t, A_t)$ towards value of alternative action $R_{t+1} + \gamma Q_\theta(S_{t+1}, a')$
Least Squares Q-Learning

- Consider the following linear Q-learning update

\[
\delta = R_{t+1} + \gamma Q_\theta(S_{t+1}, \pi(S_{t+1})) - Q_\theta(S_t, A_t)
\]

\[
\Delta \theta = \alpha \delta \phi(S_t, A_t)
\]

- LSTDQ algorithm: solve for total update = zero

\[
0 = \sum_{t=1}^{T} \alpha (R_{t+1} + \gamma Q_\theta(S_{t+1}, \pi(S_{t+1})) - Q_\theta(S_t, A_t)) \phi(S_t, A_t)
\]

\[
\theta = \left(\sum_{t=1}^{T} \phi(S_t, A_t)(\phi(S_t, A_t) - \gamma \phi(S_{t+1}, \pi(S_{t+1})))^\top \right)^{-1} \sum_{t=1}^{T} \phi(S_t, A_t) R_{t+1}
\]
The following pseudocode uses LSTDQ for policy evaluation.

It repeatedly re-evaluates experience D with different policies.

function LSPI-TD(D, π_0)

$\pi' \leftarrow \pi_0$

repeat

$\pi \leftarrow \pi'$

$Q \leftarrow \text{LSTDQ}(\pi, D)$

for all $s \in S$ do

$\pi'(s) \leftarrow \underset{a \in A}{\text{argmax}} \ Q(s, a)$

end for

until $(\pi \approx \pi')$

return π

end function
Consider the 50 state version of this problem
- Reward +1 in states 10 and 41, 0 elsewhere
- Optimal policy: R (1-9), L (10-25), R (26-41), L (42, 50)
- Features: 10 evenly spaced Gaussians (σ = 4) for each action
- Experience: 10,000 steps from random walk policy
LSPI in Chain Walk: Action-Value Function

Figure 13: LSPI iterations on a 50-state chain with a radial basis function approximator (reward only in states 10 and 41).
Top: The state-action value function of the policy being evaluated in each iteration (LSPI approximation - solid lines; exact values - dotted lines).
Bottom: The improved policy after each iteration (R action - dark/red shade; L action - light/blue shade; LSPI - top stripe; exact - bottom stripe).

Exact (solid blue)
Function Approx. (red dashes)
Questions?