1. Markov Processes
2. Markov Reward Processes
3. Markov Decision Processes
4. Extensions to MDPs
Introduction to MDPs

- Markov decision processes formally describe an environment for reinforcement learning
- Conventionally where the environment is fully observable
 i.e. The current state completely characterizes the process
- Almost all RL problems can be formalized as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state

References: Sutton & Barto Chapter 3.
Slides: http://josephmodayil.com
A variety of statistical notation has been used in earlier RL textbooks and earlier versions of this course.

We will move towards more standard notation.

Lowercase letters are used for states s and functions f.

Uppercase letters are used for random variables, S_t, and these are often indexed by time.

This is not the case yet for the figures, so for now assume $V^\pi = v^\pi$ (and similar), particularly in figures. There will be some typos in the slides. Also be aware of this when combining information from different sources.

An expectation $\mathbb{E} [G_t]$ is often made over future trajectories.

A probability distribution is denoted by $\mathbb{P} []$.
Markov Property

“The future is independent of the past given the present”
Consider a sequence of random states, \(\{S_t\}_{t \in \mathbb{N}} \), indexed by time.

Definition

A random state \(S_t \) has the *Markov* property if and only if \(\forall s, s' \in S \)

\[
P[S_{t+1} = s' \mid S_t = s] = P[S_{t+1} = s' \mid S_1, \ldots, S_t = s]
\]

for all histories (all instantiations of \(S_k \) for \(k < t \)).

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
State Transition Matrix

For random states with the Markov property, the state transition probability is defined by

$$P_{ss'} = \mathbb{P} \left[S_{t+1} = s' \mid S_t = s \right]$$

State transition matrix P defines transition probabilities from all states s to all successor states s',

$$P = \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \ddots & \vdots \\ P_{11} & \cdots & P_{nn} \end{bmatrix}$$

where each row of the matrix sums to 1.
A Markov process is a memoryless random process, i.e. a sequence of random states S_1, S_2, \ldots with the Markov property.

Definition

A *Markov Process* (or *Markov Chain*) is a tuple $\langle S, \mathcal{P} \rangle$

- S is a (finite) set of states
- \mathcal{P} is a state transition probability matrix,

$$
\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' \mid S_t = s]
$$
Example: Student Markov Chain
Example: Student Markov Chain Episodes

Sample episodes for Student Markov Chain starting from $S_1 = C1$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep
Example: Student Markov Chain Transition Matrix

\[
P = \begin{bmatrix}
C1 & C2 & C3 & Pass & Pub & FB & Sleep \\
C1 & 0.5 & 0.8 & 0.6 & 0.4 & 0.2 & 0.5 \\
C2 & 0.2 & 0.4 & 0.4 & 0.1 & 0.9 & 0.2 \\
C3 & 0.4 & 0.6 & 0.4 & 0.1 & 0.9 & 0.2 \\
Pass & 0.5 & 0.8 & 0.6 & 0.4 & 0.2 & 0.5 \\
Pub & 0.2 & 0.4 & 0.4 & 0.1 & 0.9 & 0.2 \\
FB & 0.2 & 0.4 & 0.4 & 0.1 & 0.9 & 0.2 \\
Sleep & 0.5 & 0.8 & 0.6 & 0.4 & 0.2 & 0.5 \\
\end{bmatrix}
\]
A Markov reward process is a Markov chain with values.

Definition

A *Markov Reward Process* is a tuple \(\langle S, P, R, \gamma \rangle \)

- \(S \) is a finite set of states
- \(P \) is a state transition probability matrix,
 \[P_{ss'} = \mathbb{P}[S_{t+1} = s' \mid S_t = s] \]
- \(R \) is a (expected) reward function,
 \[R_s = \mathbb{E}[R_{t+1} \mid S_t = s] \]
- \(\gamma \) is a discount factor, \(\gamma \in [0, 1] \)
Example: Student MRP
Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0, 1]$ is the present value of future rewards.
- The value of receiving reward R after $k + 1$ time-steps is $\gamma^k R$.
- This values immediate reward above delayed reward.
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation
Most Markov reward and decision processes are discounted. Why?

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Animal/human behaviour shows preference for immediate reward
- It sometimes possible to use undiscounted Markov reward processes (i.e. $\gamma = 1$), e.g. if all sequences terminate.
The value function $v(s)$ gives the long-term value of state s.

Definition

The *state value function* $v(s)$ of an MRP is the expected return starting from state s:

$$v(s) = \mathbb{E} [G_t | S_t = s]$$
Example: Student Markov Chain Returns

Sample returns for Student Markov Chain:
Starting from $S_1 = C1$ with $\gamma = \frac{1}{2}$

$$G_1 = R_1 + \gamma R_2 + ... + \gamma^{T-1} R_T$$

<table>
<thead>
<tr>
<th>State Sequence</th>
<th>G_1 Calculation</th>
<th>Value G_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 C2 C3 Pass Sleep</td>
<td>$G_1 = -2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{4} + 10 \times \frac{1}{8}$</td>
<td>-2.25</td>
</tr>
<tr>
<td>C1 FB FB C1 C2 Sleep</td>
<td>$G_1 = -2 - 1 \times \frac{1}{2} - 1 \times \frac{1}{4} - 2 \times \frac{1}{8} - 2 \times \frac{1}{16}$</td>
<td>-3.125</td>
</tr>
<tr>
<td>C1 C2 C3 Pub C2 C3 Pass Sleep</td>
<td>$G_1 = -2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{4} + 1 \times \frac{1}{8} - 2 \times \frac{1}{16} ...$</td>
<td>-3.41</td>
</tr>
<tr>
<td>C1 FB FB C1 C2 C3 Pub C1 ...</td>
<td>$G_1 = -2 - 1 \times \frac{1}{2} - 1 \times \frac{1}{4} - 2 \times \frac{1}{8} - 2 \times \frac{1}{16} ...$</td>
<td>-3.20</td>
</tr>
<tr>
<td>FB FB FB C1 C2 C3 Pub C2 Sleep</td>
<td>$G_1 = -2 - 1 \times \frac{1}{2} - 1 \times \frac{1}{4} - 2 \times \frac{1}{8} - 2 \times \frac{1}{16} ...$</td>
<td>-3.20</td>
</tr>
</tbody>
</table>
Example: State-Value Function for Student MRP (1)
Example: State-Value Function for Student MRP (2)
Example: State-Value Function for Student MRP (3)
The value function can be decomposed into two parts:

- immediate reward \(r \)
- discounted value of successor state \(\gamma v(s') \)

\[
\begin{align*}
v(s) &= \mathbb{E} [G_t \mid S_t = s] \\
&= \mathbb{E} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots \mid S_t = s \right] \\
&= \mathbb{E} \left[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \ldots) \mid S_t = s \right] \\
&= \mathbb{E} \left[R_{t+1} + \gamma G_{t+1} \mid S_t = s \right] \\
&= \mathbb{E} \left[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s \right]
\end{align*}
\]
Bellman Equation for MRPs (2)

\[v(s) = \mathbb{E} [R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s] \]

\[v(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} v(s') \]
Example: Bellman Equation for Student MRP

\[4.3 = -2 + 0.6 \times 10 + 0.4 \times 0.8 \]
The Bellman equation can be expressed concisely using matrices,

\[v = R + \gamma P v \]

where \(v \) is a column vector with one entry per state

\[
\begin{bmatrix}
v(1) \\
\vdots \\
v(n)
\end{bmatrix} =
\begin{bmatrix}
R_1 \\
\vdots \\
R_n
\end{bmatrix} + \gamma
\begin{bmatrix}
P_{11} & \cdots & P_{1n} \\
\vdots & \ddots & \vdots \\
P_{n1} & \cdots & P_{nn}
\end{bmatrix}
\begin{bmatrix}
v(1) \\
\vdots \\
v(n)
\end{bmatrix}
\]
Solving the Bellman Equation

- The Bellman equation is a linear equation
- It can be solved directly:

\[v = R + \gamma P v \]

\[(I - \gamma P) v = R \]

\[v = (I - \gamma P)^{-1} R \]

- Computational complexity is \(O(n^3) \) for \(n \) states
- Direct solution only possible for small MRP s
- There are many iterative methods for large MRP s, e.g.
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning
Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with decisions. It is an environment in which all random states are Markov.

Definition

A *Markov Decision Process* is a tuple \(\langle S, A, P, R, \gamma \rangle \)

- \(S \) is a finite set of states
- \(A \) is a finite set of actions
- \(P \) is a state transition probability matrix, \(P_{ss'} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a] \)
- \(R \) is a reward function, \(R_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] \)
- \(\gamma \) is a discount factor \(\gamma \in [0, 1] \).
Markov Decision Process: New notation

A more precise way to describe the state and reward dynamics of a MDP is to give the probability for each possible next state and reward.

\[p(s', r \mid s, a) \equiv \mathbb{P} \left[S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a \right] \]

We can then write the state transition probabilities as

\[\mathcal{P}_{ss'}^a \equiv \mathbb{P} \left[S_{t+1} = s' \mid S_t = s, A_t = a \right] = \sum_{r \in \mathcal{R}} p(s', r \mid s, a). \]

We can then write the state transition probabilities as

\[\mathcal{R}_s^a \equiv \mathbb{E} \left[R_{t+1} = r \mid S_t = s, A_t = a \right] = \sum_{r \in \mathcal{R}} \sum_{s' \in \mathcal{S}} r \cdot p(s', r \mid s, a). \]
Example: Student MDP

![Diagram of a Student MDP with states and rewards]

- **Facebook**: $r = -1$
- **Quit**: $r = 0$
- **Study**: $r = -2$
- **Sleep**: $r = 0$
- **Pub**: $r = +1$
- **Final State**: $r = +10$
A policy \(\pi \) is a distribution over actions given states,

\[
\pi(s, a) = \mathbb{P}[A_t = a \mid S_t = s]
\]

- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are stationary (time-independent),
 \(A_t \sim \pi(S_t, \cdot), \forall t > 0 \)
- The policy \(\pi(s, a) \) is sometimes written as \(\pi(a|s) \)
Given an MDP $\mathcal{M} = \langle S, A, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and a policy π

- The state sequence S_1, S_2, \ldots is a Markov process $\langle S, \mathcal{P}^\pi \rangle$
- The state and reward sequence S_1, R_2, S_2, \ldots is a Markov reward process $\langle S, \mathcal{P}^\pi, \mathcal{R}^\pi, \gamma \rangle$

where

$$
\mathcal{P}^\pi_{s, s'} = \sum_{a \in A} \pi(s, a) \mathcal{P}^a_{s, s'}
$$

$$
\mathcal{R}^\pi_s = \sum_{a \in A} \pi(s, a) \mathcal{R}^a_s
$$
Definition

The expectation of a random variable F_t conditional on π being used to select future actions is written as $\mathbb{E}_\pi [F_t]$.
Value Function

Definition

The *state-value function* \(v^\pi(s) \) of an MDP is the expected return starting from state \(s \), and then following policy \(\pi \)

\[
v^\pi(s) = \mathbb{E}_\pi [G_t \mid S_t = s]
\]

Definition

The *action-value function* \(q^\pi(s, a) \) is the expected return starting from state \(s \), taking action \(a \), and then following policy \(\pi \)

\[
q^\pi(s, a) = \mathbb{E}_\pi [G_t \mid S_t = s, A_t = a]
\]
Example: State-Value Function for Student MDP

\[V^\pi(s) \text{ for } \pi(s,a) = 0.5, \gamma = 1 \]
The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$
\nu^\pi(s) = \mathbb{E}_\pi \left[R_{t+1} + \gamma \nu^\pi(S_{t+1}) \mid S_t = s \right]
$$

The action-value function can similarly be decomposed,

$$
q^\pi(s, a) = \mathbb{E}_\pi \left[R_{t+1} + \gamma q^\pi(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]
$$
Bellman Expectation Equation for v^π

$$v^\pi(s) = \sum_{a \in A} \pi(s, a) q^\pi(s, a)$$
Bellman Expectation Equation for q^π:

$$q^\pi(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v^\pi(s')$$
Bellman Expectation Equation for v^π (2)

$$v^\pi(s) = \sum_{a \in A} \pi(s, a) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v^\pi(s') \right)$$
Bellman Expectation Equation for q^π (2)

\[
q^\pi(s, a) = R_s + \gamma \sum_{s' \in S} P^a_{ss'} \sum_{a' \in A} \pi(s', a') q^\pi(s', a')
\]
Example: Bellman Expectation Equation in Student MDP

\[7.4 = 0.5 \times (1 + 0.2 \times -1.3 + 0.4 \times 2.7 + 0.4 \times 7.4) + 0.5 \times 10 \]
Bellman Expectation Equation (Matrix Form)

The Bellman expectation equation can be expressed concisely using the induced MRP,

\[v^\pi = R^\pi + \gamma P^\pi v^\pi \]

with direct solution

\[v^\pi = (I - \gamma P^\pi)^{-1} R^\pi \]
Optimal Value Function

Definition

The *optimal state-value function* $v^*(s)$ is the maximum value function over all policies

$$v^*(s) = \max_{\pi} v^\pi(s)$$

The *optimal action-value function* $q^*(s, a)$ is the maximum action-value function over all policies

$$q^*(s, a) = \max_{\pi} q^\pi(s, a)$$

- The optimal value function specifies the best possible performance in the MDP.
- An MDP is “solved” when we know the optimal value fn.
Example: Optimal Value Function for Student MDP

Markov Decision Processes

Optimal Value Functions

$V^*(s)$ for $\gamma = 1$
Example: Optimal Action-Value Function for Student MDP

\[Q^*(s,a) \text{ for } \gamma = 1 \]

- Facebook: \(r = -1 \), \(Q^* = 5 \)
- Quit: \(r = 0 \), \(Q^* = 6 \)
- Study: \(r = 0 \), \(Q^* = 8 \)
- Sleep: \(r = 0 \), \(Q^* = 0 \)
- Pub: \(r = +1 \), \(Q^* = 8.4 \)
Define a partial ordering over policies

\[\pi \geq \pi' \text{ if } v^\pi(s) \geq v^{\pi'}(s), \forall s \]

Theorem

For any Markov Decision Process

- There exists an optimal policy \(\pi^* \) that is better than or equal to all other policies, \(\pi^* \geq \pi, \forall \pi \)
- All optimal policies achieve the optimal value function, \(v^{\pi^*}(s) = v^*(s) \)
- All optimal policies achieve the optimal action-value function, \(q^{\pi^*}(s, a) = q^*(s, a) \)
Finding an Optimal Policy

An optimal policy can be found by maximising over $q^*(s, a)$,

$$
\pi^*(s, a) = \begin{cases}
1 & \text{if } a = \arg\max_{a \in A} q^*(s, a) \\
0 & \text{otherwise}
\end{cases}
$$

- There is always a deterministic optimal policy for any MDP
- If we know $q^*(s, a)$, we immediately have the optimal policy
- There can be multiple optimal policies
Example: Optimal Policy for Student MDP

\[\pi^*(s,a) \text{ for } \gamma = 1 \]

- **Facebook**
 - \(r = -1 \)
 - \(Q^* = 5 \)

- **Quit**
 - \(r = 0 \)
 - \(Q^* = 6 \)

- **Study**
 - \(r = -2 \)
 - \(Q^* = 6 \)

- **Sleep**
 - \(r = 0 \)
 - \(Q^* = 0 \)

- **Pub**
 - \(r = +1 \)
 - \(Q^* = 8.4 \)

- **Study**
 - \(r = +10 \)
 - \(Q^* = 10 \)
Bellman Optimality Equation for v^*

The optimal value functions are recursively related by the Bellman optimality equations:

$$v^*(s) = \max_a q^*(s, a)$$
Bellman Optimality Equation for q^*

$$q^*(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v^*(s')$$
Bellman Optimality Equation for v^* (2)

$$v^*(s) = \max_a R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v^*(s')$$
Bellman Optimality Equation for q^* (2)

$$q^*(s, a) = R_s + \gamma \sum_{s' \in S} P_{ss'}^a \max_{a'} v^*(s', a')$$
Example: Bellman Optimality Equation in Student MDP

6 = max {-2 + 8, -1 + 6}
Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa
Extensions to MDPs

- Infinite and continuous MDPs
- Partially observable MDPs
- Undiscounted, average reward MDPs
Infinite MDPs

The following extensions are all possible:

- **Countably infinite state and/or action spaces**
 - Straightforward

- **Continuous state and/or action spaces**
 - Closed form for linear quadratic model (LQR)

- **Continuous time**
 - Requires partial differential equations
 - Hamilton-Jacobi-Bellman (HJB) equation
 - Limiting case of Bellman equation as time-step $\rightarrow 0$
A POMDP is an MDP with hidden states. It is a hidden Markov model with actions.

Definition

A *Partially Observable Markov Decision Process* is a tuple \(\langle S, A, O, P, R, Z, \gamma \rangle \)

- \(S \) is a finite set of states
- \(A \) is a finite set of actions
- \(O \) is a finite set of observations
- \(P \) is a state transition probability matrix,
 \[P_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a] \]
- \(R \) is a reward function,
 \[R_s^a = \mathbb{E}[R_{t+1} = r | S_t = s, A_t = a] \]
- \(Z \) is an observation function,
 \[Z_s^a = \mathbb{P}[O_{t+1} = o | S_t = s, A_t = a] \]
- \(\gamma \) is a discount factor \(\gamma \in [0, 1] \).
Belief States

Definition

A *history* H_t is a sequence of actions, rewards, and observations

$$H_t = A_1, R_2, O_2, ..., A_{t-1}, R_t, O_t$$

Definition

A *belief state* $b(H_t)$ is a probability distribution over states, conditioned on the history h_t

$$b(H_t) = (\mathbb{P}[S_t = s^1 | H_t], ..., \mathbb{P}[S_t = s^n | H_t])$$
Reductions of POMDPs

- The history H_t satisfies the Markov property
- The belief state $b(H_t)$ satisfies the Markov property

- A POMDP can be reduced to an (infinite) history tree
- A POMDP can be reduced to an (infinite) belief state tree
Ergodic Markov Process

An ergodic Markov process is

- **Recurrent**: each state is visited an infinite number of times
- **Aperiodic**: each state is visited without any systematic period

Theorem

An ergodic Markov process has a limiting stationary distribution $d^\pi(s)$ with the property

$$d^\pi(s) = \sum_{s' \in S} P^k_{ss'} d^\pi(s')$$
Ergodic MDP

Definition

An MDP is ergodic if the Markov chain induced by any policy is ergodic.

For any policy π, an ergodic MDP has an average reward per time-step ρ^π that is independent of start state.

$$\rho^\pi = \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_\pi \left[\sum_{t=1}^{T} R_t \right]$$
The value function of an undiscounted, ergodic MDP can be expressed in terms of average reward.

\[\tilde{v}^\pi(s) = \mathbb{E}_\pi \left[\sum_{k=1}^{\infty} (R_{t+k} - \rho^\pi) \mid S_t = s \right] \]

There is a corresponding average reward Bellman equation,

\[\tilde{v}^\pi(s) = \mathbb{E}_\pi \left[(R_{t+1} - \rho^\pi) + \sum_{k=1}^{\infty} (R_{t+k+1} - \rho^\pi) \mid S_t = s \right] \]

\[= \mathbb{E}_\pi \left[(R_{t+1} - \rho^\pi) + \tilde{v}^\pi(S_{t+1}) \mid S_t = s \right] \]
The only stupid question is the one you were afraid to ask but never did.
-Rich Sutton